On Piecewise-Polynomial Approximation of Functions with a Bounded Fractional Derivative in an L_{p}-Norm

G. W. Wasilkowski*
Depariment of Computer Science. University of Kontucky, Lexington, Kentucky 40506, V.S.A.
Cummunicated by Günther vürnherger

Received September 26. 1988

Abstract

We study the crror in approximating functions with a bounded $(r+\alpha)$ th derivative in an $l_{i j}$-norm. Here r is a nonnegative integer, $x \in\left[0,1\right.$) and $f^{\prime \prime \prime}{ }^{\prime \prime}$ is the classical fractional derivative. i.c. $f^{(r+x}(y)-\int_{0}^{1}(y-f)^{x} d\left(f^{r r}(t)\right)$. We prove that, for any such function f, there exists a piecewise-polynomial of degree s that interpolates f at k equally spaced points and that approximates f with an error (in sup-norm $) \| f^{\left(r+x l_{n}\right.} O\left(\left.n^{-t r+y}\right|^{\prime \prime}\right)$. We also prove that no algorithm based on n function and or derivative values of f has the error equal $\left\|f^{t r+x}\right\|_{p} o\left(n n^{(r+x} 1 \quad{ }^{\prime \prime}\right)$ for any f. This implies the optimality of piecewise-polynomial interpolation. These two results generalize well-known results on approximating functions with bounded r th derivative $(x=0)$. We stress that the piecewise-polynomial approximation does not depend on α nor on p. It does not depend on the exact value of r as well; what matters is an upper bound s on $r, s \geqslant r$. Hence, even without knowing the actual regularity (r, x, and p) of f, we can approximate the function f with an error equal (modulo a constant) to the minimal worst case error when the regularity were known. i 1990 Academic Press, Ira:

1. Introduction

For a nonnegative integer r and $p \in[1,+\infty]$, let W_{p}^{r} be the Sobolev space, i.e., it consists of all functions $f:[0,1] \rightarrow \boldsymbol{\Omega}$ with $(r-1)$ st derivative absolutely continuous and $f^{(r)} \in L_{P}$

It is well known that for any points $0 \leqslant t_{1}<\cdots<t_{n} \leqslant 1$ and any function $f \in W_{p}^{r}$, the error in approximating f by a piecewise-polynomial $P_{r-1}(f)$ of degree $r-1$ interpolating f at the points t_{i} is proportional to $\left\|f^{(r)}\right\|_{p} \Delta_{n}^{1 / n} \quad r$ i.e..

$$
\sup _{f \in w_{r}^{\prime}} \frac{\left\|f-P_{r}(f)\right\|_{\text {sup }}}{\left\|f^{(r)}\right\|_{p}}=O\left(A_{n}^{1, p r}\right) .
$$

Here, $A_{n}=\max _{i}\left|t_{i}-t_{i},\right|$ with $t_{0}=0$ and $t_{n+1}=1$.

[^0]It is also known, see, e.g., $[1,6]$ or $[3,5]$ and the papers cited there, that no algorithm that is based only on n function and/or derivative evaluations has the error smaller than $\left.O\left(n^{1 / p}\right)^{r}\right)$. Hence, modulo a constant, an algorithm provided by piecewise-polynomial interpolation at equally spaced points is optimal.

In this paper we generalize these results by considering functions that have $(r+\alpha)$ th derivative bounded in L_{p}-norm, where α is an arbitrary real number from $[0,1)$. The class of such functions we denote by $W_{p}^{r, x}$: see Section 2 for a formal definition.

In particular, in Theorem 1 we show that for any r, α, and p, the piecewise-polynomial interpolation of degree s at n equally spaced points yields an algorithm with the error

$$
\sup _{f \in \boldsymbol{H}_{r}^{r, x}} \frac{\left\|f-P_{s}(f)\right\|_{\text {sup }}}{\left\|f^{(r+x)}\right\|_{p}}=O\left(n^{(r+x-1 / p)}\right) \quad \text { if } \quad s \geqslant r .
$$

In Theorem 2 we show that no algorithm based on n function and/or derivative evaluations has the worst case error for the class $W_{p}^{\prime \cdot x}$ smaller than $O\left(n^{1 / p} r^{x}\right)$. This, with Theorem 1, implies optimality (modulo a constant) of P_{s} at equally spaced points for $s \geqslant r$.

We summarize the contents of the paper. Theorems 1 and 2 are presented in Sections 2 and 3, respectively. We conclude the paper, Section 4, with comments concerning applications of Theorems 1 and 2 to other problems.

2. Error of Piecewise-Polynomial Interpolation

For given a nonnegative integer $r, \alpha \in[0,1)$, and $p \in[1, \infty]$, let

$$
W_{r}^{r, x}=\left\{f:[0,1] \rightarrow \mathfrak{M}: f^{(r)} \text { is abs. cont. and }\left\|T_{r, x}(f)\right\|_{p}<\infty\right\}
$$

Here $T_{r . x}(f)$, the fractional derivative $f^{(r+x)}$, is defined by

$$
T_{r, x}(f)(y)=\int_{0}^{1}(y-t)_{+}^{x} d\left(f^{(r)}(t)\right)
$$

Equivalently,

$$
T_{r, x}(f)(y)=P_{x}\left(f^{(r+1}\right)(y)
$$

and P_{x} is a fractional derivative (or integral) operator,

$$
P_{x}(g)(y)=\frac{-1}{1-\alpha} \int_{0}^{1} g(t) d\left((y-t)_{+}^{1 \cdots x}\right) .
$$

Observe that for $\alpha=0, T_{r, \chi}(f)(y)=f^{(r)}(y)-f^{(r)}(0)$. Hence, $W_{r}^{r \cdot 0}$ is a dense subspace of W_{p}^{r}.

For given n and $0 \leqslant t_{1}<\cdots<t_{n} \leqslant 1$, let N_{n} be the information consisting of function values at points t_{i},

$$
N_{n}(f)=\left[f\left(t_{1}\right), \ldots, f\left(t_{n}\right)\right],
$$

and let $A_{s, n}(N(f))$ be a piecewise-polynomial of degree s that interpolates f. We measure the (worst case) error of $A_{s . n}$ in the class $W_{p}^{r \cdot, x}$ by

$$
e\left(A_{s, n}, N_{n} ; r, \alpha, p\right)=\sup _{i \in w_{r}^{r, x}} \frac{\left\|f^{\prime}-A_{s, n}\left(N_{n}(f)\right)\right\|_{\text {sup }}}{\left\|T_{r, \chi}(f)\right\|_{p}}
$$

Theorem 1. Let $r+\alpha-1 / p \geqslant 0$. Then for any $n, 0 \leqslant t_{t}<\cdots<t_{n} \leqslant 1$, and $s \geqslant r$,

$$
e\left(A_{s, n}, N_{n} ; r, \alpha, p\right)=O\left(A_{n}^{s+\alpha} \quad 1 \cdot p \delta_{n}^{r}\right) \quad \text { as } \quad n \rightarrow \infty,
$$

where $A_{n}:=\max _{1 \leqslant i \leqslant n+1}\left(t_{i}-t_{i} 1\right)$ and $\delta_{n}:=\min _{2 \leqslant i \leqslant n}\left(t_{i}-t_{i} \quad 1\right)$ with $t_{0}=0$ and $t_{n+1}=1$.

Proof. We begin with $s=r$.
For an arbitrary $x \in[0,1]$, let $t_{i}, t_{i+1}, \ldots, t_{i+r}$ be the interpolation points used by the algorithm $A_{s, n}$ to approximate $f(x)$. That is,

$$
A_{s, n}\left(N_{n}(f)\right)(x)=p_{i}(x)=\sum_{i=i}^{i+\prime} f\left[t_{i}, \ldots, t_{j}\right] \prod_{k-i}^{i}\left(x-t_{k}\right)
$$

Obviously, $x \in\left[t_{i}-A_{n} / 2, t_{i+r}+A_{n} / 2\right]$, and for $x \notin\left\{t_{i}, \ldots, t_{i+r}\right\}$ the error at x equals

$$
\begin{equation*}
e(x)=f(x)-p_{i}(x)=a(x) \prod_{i=i}^{++i}\left(x-t_{j}\right) \tag{2.1}
\end{equation*}
$$

with

$$
a(x)=f\left[t_{i}, \ldots, t_{r+i}, x\right]=\frac{f\left[t_{i}, \ldots, t_{r, i} 1, x\right]-f\left[t_{i+1}, \ldots, t_{r+i} 1, t_{r+i}, x\right]}{t_{i}-t_{r+i}} .
$$

It is easy to check that for any y and x,

$$
f^{(r)}(y)-f^{(r)}(x)=c_{\chi}\left[\begin{array}{lll}
P_{1} & x & \left(T_{r, x}(f)\right)(y)-P_{1} \tag{2.2}
\end{array}{ }_{x}\left(T_{r, x}(f)\right)(x)\right]
$$

with

$$
c_{x}=\int_{0}^{x} \frac{1}{t^{x}(1+t)} d t
$$

This and the well-known formula for divided differences,

$$
f\left[x_{0}, \ldots, x_{k}\right]=\int_{0}^{1} \int_{0}^{\lambda_{1}} \cdots \int_{0}^{i_{k}-1} f^{(k)}\left(x_{0}+\sum_{j=1}^{k} \lambda_{j}\left(x_{j}-x_{j-1}\right)\right) d \lambda_{k} \cdots d \lambda_{1}
$$

yield

$$
\begin{aligned}
a(x)= & \frac{c_{x}}{t_{r+i}-t_{i}} \int_{0}^{1} \int_{0}^{\lambda_{1}} \cdots \int_{0}^{\lambda_{r}}: \\
& \times\left[\int_{0}^{1} T_{r-x}(f)(z)\left(\left(y_{1}-z\right)_{+}^{x}-1-\left(y_{z}-z\right)_{+}^{x-1}\right) d z\right] \times d \lambda_{r} \cdots d \lambda_{1}
\end{aligned}
$$

where

$$
y_{1}=t_{i+1}+i_{1}\left(t_{i+2}-t_{i+1}\right)+\cdots+\lambda_{r}\left(x-t_{r+i}\right)
$$

and

$$
y_{2}=t_{i}+\lambda_{1}\left(t_{i+1}-t_{i}\right)+\cdots+\lambda_{r}\left(x-t_{r+i-1}\right) .
$$

Note that the integral over $z \in[0,1]$ reduces to an integral over $=\in\left[0, t_{r+i}+A_{n} / 2\right]$ since y_{1} and y_{2} are always not greater than $t_{r+i}+A_{n} / 2$. Hence, changing the order of integration, we estimate $|a(x)|$ by

$$
|a(x)| \leqslant \frac{c_{x}}{t_{r+i}-t_{i}}\left(I_{1}+I_{2}\right),
$$

where

$$
\begin{aligned}
I_{1}= & \int_{0}^{t_{i}} A_{n}\left|T_{r_{1}, x}(f)(z)\right| \mid \int_{0}^{1} \int_{0}^{i_{1}} \cdots \int_{0}^{\lambda_{z}}\left(\left(y_{1}-z\right)^{x-1}\right. \\
& \left.-\left(y_{2}-z\right)^{x-1}\right) d \lambda_{r} \cdots d \lambda_{1} \mid d z
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2}= & \int_{t_{1} \cdots \lambda_{n}}^{t_{1}+A_{n} \cdot 2}\left|T_{r . \alpha}(f)(z)\right| \mid \int_{0}^{1} \int_{0}^{\lambda_{1}} \cdots \int_{0}^{\lambda_{r-1} 1}\left(\left(y_{1}-z\right)_{+}^{x-1}\right. \\
& \left.-\left(y_{2}-z\right)_{+}^{x-1}\right) d \lambda_{r} \cdots d \lambda_{1} \mid d z .
\end{aligned}
$$

(Here, we assume that $t_{i}>A_{n}$. This is without loss of generality since otherwise $I_{1}=0$ and I_{2} is over $z \in\left[0, t_{++i}+A_{n} / 2\right]$.)

To estimate I_{1} observe that the mean value theorem yields

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{\lambda_{r}}\left(\left(y_{1}-z\right)^{2} \quad 1-\left(y_{2}-z\right)^{x} 1\right) d \lambda_{r} \cdots d \lambda_{1} \\
\quad=\frac{\left(x_{1}-z\right)^{x} \quad 1-\left(x_{2}-z\right)^{x} \quad 1}{r!}
\end{gathered}
$$

for $x_{j}=x_{j}(z) \in\left[t_{i}-\Delta_{n} / 2, t_{r+i}+\Delta_{n} 2\right]$. Note also that

$$
\left(x_{1}-z\right)^{x} \quad{ }^{\prime}-\left(x_{2}-z\right)^{\alpha} \quad 1=\left(x_{1}-x_{2}\right)(\alpha-1)\left(t_{i}-\Delta_{n} 2+\delta-z\right)^{x} \quad 2
$$

for some $\delta \geqslant 0$. Take now q defined by $1 / q+1 / p=1$. Then Hölder's inequality and the fact that $(\alpha-2) q+1<0$ imply

$$
\begin{align*}
I_{1} & \left.\leqslant c_{1} A_{n} \mid T_{r, x}\left(f^{\prime}\right) \|_{p}\left[\int_{0}^{r_{i}}{ }^{1, n}\left(t_{i}-=-A_{n} / 2\right)^{1 \times} \quad 2\right)_{4} d z\right]^{1,4} \\
& =c_{2} d_{n}^{\alpha}{ }^{1+1,4}=c_{2} \Delta_{n}^{\alpha} \tag{2.3}
\end{align*}
$$

Here c_{1} and c_{2} are positive constants independent of n.
To estimate I_{2}, observe that

$$
\int_{0}^{\lambda_{r}} \quad\left(y_{1}-z\right)_{+}^{x} \quad 1 d \lambda_{r} \leqslant \frac{\left(t_{r+i}+\Delta_{n}(2-z)^{x}\right.}{\left|x-t_{r+i}\right|(1-x)}
$$

and

$$
\int_{0}^{i_{1}} \quad\left(y_{2}-z\right)_{+}^{x} \quad 1 d l_{n} \leqslant \frac{\left(t_{r+i}+A_{n} / 2-z\right)^{x}}{\left|x-t_{r-1} \quad\right|(1-\alpha)} .
$$

Hence Hölder's inequality yields

$$
I_{2} \leqslant c_{3}\left\|T_{r, x}(f)\right\|_{p} A_{n}^{\alpha+1 / q}\left[\frac{1}{\left|x-t_{r+i} \quad\right|}+\frac{1}{\left|x-t_{r+i}\right|}\right]
$$

for a positive constant c_{3}. This, (2.3), and (2.1) imply that

$$
|e(x)| \leqslant c \mathbb{A}_{n}^{\prime+x} \quad{ }^{\prime \prime \prime} .
$$

as claimed.
To complete the proof we now consider $s>r$. As before, given x, let p_{i} interpolate f at $t_{i}, \ldots, t_{r+\ldots}$. Then for $x \notin\left\{t_{i}, \ldots, t_{i+n}\right\}$ the error at x equals

$$
e(x)=f(x)-p_{i}(x)=a(x) \prod_{i=i}^{i+i}\left(x-t_{j}\right)
$$

with $a(x)$ being a divided difference of degree $s+1, a(x)=f\left[t_{i}, \ldots, t_{s, i}, x\right]$.

Using the recursive definition for divided differences, we can represent $a(x)$ as a combination of divided differences of degree $r+1$. For those divided differences, we have the same estimate as for $a(x)$ with $s=r$. Since the coef ficients in this combination are proportional to $\Omega\left(\delta_{n}^{r}\right)$, we get that

$$
|e(x)| \leqslant c d_{n}^{s ; x} \mid n \partial_{n}^{r}
$$

This completes the proof,
Remark 1. For equally spaced points, $A_{n}=\delta_{n}=1 / n$ and then

$$
c\left(A_{s, n}, N_{n} ; r, \alpha, p\right) \leqslant c_{x, k, p} n \quad(r ; x \quad i, p)
$$

whenever $s \geqslant r$. Hence, taking s larger than r does not essentially increase the worst case error (obviously, the constant $c_{s, r, x, p}$ does depend on s and it grows with $s-r$). On the other hand, if $s<r$ (or $s<r-1$ for $\chi=0$), the worst case error of P_{s} for the class $W_{p}^{r, x}$ is unbounded. Hence, taking too small s leads to less efficient algorithms.

3. Minimal Error

We estimate the minimal worst case error of approximating $f \in W_{p^{\prime \prime}}$. . That is, we estimate

$$
e(n ; r, x, p):=\inf _{N} \inf _{A} \sup _{f \in \mathcal{W}_{n}^{\prime, x}} \frac{\|f-A(N(f))\|_{\text {sup }}}{\left\|T_{r, x}(f)\right\|_{p}}
$$

where the first infimum is taken with respect to arbitrary information operator N of cardinality n,

$$
N(f)=\left[f^{\left(t_{1}\right)}\left(t_{1}\right), \ldots, f^{\left(t_{n}\right)}\left(t_{n}\right)\right],
$$

and the second infimum with respect to arbitrary algorithm A, i.e., arbitrary mapping from $\mathfrak{\Re}^{n}$ to $B[0,1]$ (the space of bounded functions).

Theorem 2.

$$
e(n ; r, \alpha, p)= \begin{cases}\Theta\left(\begin{array}{ll}
n^{(r+x} & 1 ; p)
\end{array}\right. & \text { if } r+\alpha-1 / p \geqslant 0 \\
+\infty & \text { otherwise }\end{cases}
$$

Proof. Due to Theorem 1, we need only to prove that for any $N(f)=$ $\left[f^{\left(i_{1}\right)}\left(t_{1}\right), \ldots, f^{\left.t_{n}\right)}\left(t_{n}\right)\right]$ and any A, the error

$$
e(A, N ; r, \alpha, p)=\sup _{f \in w_{r^{\prime}}^{\prime}} \frac{\|f-A(N(f))\|_{\mathrm{sup}}}{\left\|T_{r, \alpha}(f)\right\|_{p}}
$$

is bounded by

$$
e(A, N ; r, x, p)= \begin{cases}\Omega\left(n^{(r+x-1: p)}\right) & \text { if } r+x-1 / p \geqslant 0 \tag{3.1}\\ +\infty & \text { otherwise. }\end{cases}
$$

As a matter of fact, we prove a stronger result by showing that (3.1) holds even if N consists of the following $n(r+1)$ evaluations

$$
N(f)=\left[f\left(t_{1}\right), \ldots, f^{\prime r}\left(t_{1}\right), \ldots, f\left(t_{n}\right), \ldots, f^{(n)}\left(t_{n}\right)\right]
$$

Since $T_{r .0}(f)(y)=f^{(r)}(y)-f^{(r)}(0)$, (3.1) with $\alpha=0$ follows from the well-known results, see, e.g., [6]. Hence we can assume that $\alpha>0$.

We begin with $r+x-1 / p \geqslant 0$. Let $0=t_{0} \leqslant t_{1} \leqslant \cdots \leqslant t_{n} \leqslant t_{n+1}=1$ be given. Let i be an index such that $h:=t_{i+1}-t_{i} \geqslant 1 /(2 n)$ and $1-t_{i+1} \geqslant 1 / 2$. Let f be a function defined by

$$
f(x)=\left(x-t_{i}\right)_{+}^{+1}\left(t_{i+1}-x\right)_{+}^{r+1} .
$$

Then $\pm f \in W_{p}^{r, x}$ and $N(\pm f)=[0, \ldots, 0]$. Hence

$$
e(A, N ; r, \alpha, p) \geqslant \max \left\{\frac{\|f-A(0)\|_{\text {sup }}}{\left\|T_{r, x}(f)\right\|_{p}}, \frac{\|-f-A(0)\|_{\text {sup }}}{\left\|T_{r, x}(f)\right\|_{p}}\right\} \geqslant \frac{\|f\|_{\text {sup }}}{\left\|T_{r, x}(f)\right\|_{p}}
$$

for every algorithm A. Since $\|f\|_{\text {sup }}=(h / 2)^{2 r+2}$, to prove (3.1) we need only to show that

$$
\begin{equation*}
\left\|T_{r . x}(f)\right\|_{p} \leqslant c h^{r+2} x+1 p \tag{3.2}
\end{equation*}
$$

for some positive constant c independent of n. (As in Section 2, we shall use $c_{1}, c_{2}, \ldots, c_{6}$ to denote positive constants independent of n.)

Note that $T_{r, x}(f)(y)=0$ for $y \leqslant t_{i}$, and $T_{r, x}(f)(y)=\int_{t_{i}-1}^{t_{1}}(y-t)$, $f^{(r+1)}(t) d t$ for $y>t_{i}$. Since $\left|f^{(r+11}(t)\right| \leqslant c_{1} h^{r+1}$, we thus have

$$
\begin{aligned}
& \left\|T_{r_{.} x}(f)\right\|_{p}^{p} \leqslant c_{1}^{p} h^{(r+1) p} \int_{t_{1}}^{t_{i-1}+h}\left[\int_{i_{1}}^{t_{i+1}}(y-t)_{+}^{x} d t\right]^{p} d y+I \\
& =\left.\left(\frac{c_{1}}{1-x}\right)^{p} h^{(r+1) p}\right|_{i,} ^{t_{i-1}+t}\left[\left(y-t_{i}\right)^{\prime}{ }^{x}-\left(y-t_{i+1}\right)^{\prime}{ }^{x}\right]^{p} d y+I \\
& \leqslant c_{2} h^{(r+1) p} \int_{i_{i}}^{t_{i-1}+\hbar}\left(y-t_{i}\right)^{11} \quad x t_{1 \prime} d y+I \\
& \leqslant c_{3} h^{(r+2) p} h^{1} x^{x p}+I,
\end{aligned}
$$

where

$$
I=\int_{t_{t-1}+h}^{1}\left|\int_{t_{i}}^{t_{i+1}}(y-t)^{x} f^{(r+1)}(t) d t\right|^{p} d y
$$

Integration by parts and the fact that $f^{(r)}$ vanishes at t_{i} and t_{i+1} yield

$$
I=\int_{t_{3-1}+n}^{1}\left|x \int_{i_{1}}^{t_{i}+1}(y-t)^{-x-1} f^{(r)}(t) d t\right|^{p} d y
$$

Since $\left|f^{(\prime)}(t)\right| \leqslant c_{4} h^{r+2}$, we get

$$
I \leqslant c_{5} h^{(r+2) p} \int_{t_{t+1}+h}^{1}\left[\left(y-t_{i}\right)^{-x}-\left(y-t_{i+1}\right)^{-x}\right]^{p} d y
$$

Since $\left(y-t_{i}\right)^{-x}-\left(y-t_{i+1}\right)^{-x}=-\alpha h\left(y-t_{i+1}+\delta\right)^{-x} \quad$ for every $y \geqslant$ $t_{i+1}+h$ with some $\delta \geqslant 0$,

$$
I \leqslant c_{6} h^{(r+21 p} h^{p}\left[h^{1 \cdots(1+\alpha) p}-\left(1-t_{i+1}\right)^{1-(1+x) p}\right] \leqslant c_{6} h^{(r+2-\alpha+1 p) p}
$$

Thus,

$$
\left\|T_{r, \chi}(f)\right\|_{p} \leqslant c h^{r+2} \quad x+1 / p
$$

as claimed in the first part of (3.2). This completes the proof of (3.1) for $r+\alpha-1 / p \geqslant 0$.

For $r+\alpha-1 / p<0$, i.e., $r=0$ and $\alpha<1 / p$, take a suitably large integer m, and define $f_{m}(x)=x(1 / m-x)_{+}$. Again, $N\left(f_{m}\right)=0$ and $\left\|f_{m}\right\|_{\text {sup }}=(2 m)^{-2}$. Then (3.2) yields $\left\|T_{0, x}\left(f_{m}\right)\right\|_{p} \leqslant c m^{2+x-1 / p}$ and therefore

$$
\frac{\left\|f_{m}\right\|_{\text {sup }}}{\left\|T_{0, x}\left(f_{m}\right)\right\|_{p}} \geqslant \frac{1}{4 c} m^{1 / p} \quad \underset{ }{x} \rightarrow \infty .
$$

This completes the proof of (3.1).

4. Concluding Remarks

In this section we briefly discuss some generalizations and applications of the reported results.

4.1. Adaptation

It follows from general results, see $[1,2,7]$, that Theorem 2 is valid for a more general class of information that includes adaptive information, that is, information consisting of function and/or derivative values taken at adaptively selected points. Thus, function values at equally spaced points are optimal (modulo a constant) in the class of adaptive information.

4.2. Randomization

Theorem 2 combined with results of [4] and/or [8] implies optimality of a piecewise polynomial interpolation even among all random methods. Here by a random method we mean an arbitrary algorithm that uses function and/or derivative values of f at adaptively and randomly selected points; there is no restriction on employed randomization and in particular the randomization may depend on f via already computed function and/or derivative values. The error of such a method is defined as the worst case (with respect to f) expected (with respect to the randomization) error.

References

1. N. S. Bakhyalov, On approximate computation of integrals, Vestmik Moscow Lhis. Ser. Math. Mek. Astronom. Fiz. Chem. 4 (1959), 3•18. [In Russian]
2. S. Gal and C. A. Micchflli, Optimal sequential and non-sequential procedures for evaluating a functional. Appl. Anal. 10 (1980), 105-120.
3. E. Novak, "Deterministic, Stochastic, and Average Error Bounds in Optimal Recovery," in "Lecture Notes in Mathematics," Vol. 1349, Springer-Verlag, New York/Berlin, 1988.
4. E. Novak, "Stochastic Properties of Quadrature Formulas," Dept. Math. Report, Erlangen University, 1987.
5. A. Pinkls, " n-Widths in Approximation Theory," Springer-Verlag, Berlin. 1985.
6. V. M. Tiкhomirov. Best methods of approximation and interpolation of differentiable functions in the space $C[0,1]$, Math. USSR-Sb. 9. No. 2 (1969). 275-289.
7. J. F. Traub and H. Woźniakowski. "A General Theory of Optimal Algorithms." Academic Press, New York, 1980.
8. G. W. Wasilkowski, Randomization for continuous problems, J. Complexity 5 (1989), 195-218.

[^0]: * Partially supported by the National Science Foundation under Grant CCR-86-03674.

