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We study the crror in approximating functions with a bounded (r -t-;( jth
derivative in an I~r,-norm. Here r is a nonnegative integer, .;( E lO. I). and 1"" " is
the classical fractional deri vati ve. i.e .. I"; "( l'l -- S!, 1.1' - I) ; , <I( 1'" '( t)). We prove
that, for any such function r there exists a piecewise-polynomial of degree s that
interpolates f at n equally spaced points and that approximates f with an error (in
sup-norm) 111"'+'1·1' O(n -()+' 11'1). We also prove that no algorithm based on n

function and/or derivative values of f has the error equal III'" o(n I,;, I 1'1)

for any I This implies the optimality of piecewise-polynomial interpolation. These
two results generalize well-known results on approximating functions with bounded
rth dcrivativc (;( = 0). We stress that the piecewise-polynomial approximation docs
not depend on .;( nor on p. It docs not depend on the exact value of r as well: what
matters is an upper bound s on r. s;' r. Hence. even without knowing the actual
regularity (r,;(, and 1') ofr we can approximate the function/wilh an error equal
(modulo a constant) to the minimal worst case error when the regularity were
kno\vn. (1990 AcalielllH..: Pres,~, 1m:

I, INTRODLiCTlON

For a nonnegative integer rand fJ E [I, +x], let W~) be the Sobolev
space, i,e" it consists of all functions f: [0, I] ---> ~H with (r - 1)st derivative
absolutely continuous and .1"1) E L".

It is well known that for any points 0:;:; t I < ... < t" :;:; 1 and any
function f E W~" the error in approximating f by a piecewise-polynomial
PI _ I (f) of degree r - 1 interpolating f at the points t, is proportional to
11.1"11111' ,1 r

l
," ',i.e.,

IIf-P, df) "'1'=0(,1,1,1' I).
sup II.f'('III"f t= ~V;,

Here, AII=max, Il,-f, II with fo=O and f
ll

+ I = 1.
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It is also known, see, e.g., [I, 6] or [3, 5] and the papers cited there,
that no algorithm that is based only on n function and/or derivative
evaluations has the error smaller than O(n l

/{, r). Hence, modulo a
constant, an algorithm provided by piecewise-polynomial interpolation at
equally spaced points is optimal.

In this paper we generalize these results by considering functions that
have (r + o:)th derivative bounded in LI'-norm, where 'l. is an arbitrary real
number from [0, I). The class of such functions we denote by W;,'; see
Section 2 for a formal definition.

In particular, in Theorem I we show that for any r, 'l., and p, the
piecewise-polynomial interpolation of degree s at n equally spaced points
yields an algorithm with the error

11/- P,(f)llsup O(sup = n
II ( 'Ir + , I

Fe U,c;;l. fl

(r +:t. \://)) if s ~ r.

In Theorem 2 we show that no algorithm based on n function and/or
derivative evaluations has the worst case error for the class W;;·, smaller
than 0(n 1

1' r '). This, with Theorem I, implies optimality (modulo a
constant) of P, at equally spaced points for s ~ r.

We summarize the contents of the paper. Theorems I and 2 are
presented in Sections 2 and 3, respectively. We conclude the paper,
Section 4, with comments concerning applications of Theorems I and 2 to
other problems.

2. ERROR OF PIECEWISE-POLYNOMIAL INTERPOLAnON

For given a nonnegative integer r,'l. E [0, I), and p E [I ,x], let

W~·, = (f: [0, I] --> ~H: prj is abs. cont. and II T,,cf) III' < CJc I.

Here Tr,(f), the fractional derivative pr + 'I, is defined by

.1

Tr,(f)(y)= J (r-t)+'d(flr'(t)).
o

Equivalently,

Tr.,(f)(y) = p,(flr + II)(y)

and P, is a fractional derivative (or integral) operator,

-I JIP,(g)(y) = -- g(t) d((y - t) ~ ').
I-'l. 0
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Observe that for ex = 0, T",cl)(y) = P'tv) - p'I(O). Hence, W~o is a dense
subspace of w~.

For given nand 0:( t J < .,. < til :( I, let Nil be the information consisting
of function values at points t t'

NI/(/) = [l(tl)' ... , f(tll)],

and let A"I/(N(/)) be a piecewise-polynomial of degree s that interpolates
f. We measure the (worst case) error of A',II in the class W;;' by

'(A N' )_ Ilf-A,.I/(NI/U))II",p
( ',1/' II' r, ex. P - sup,., T (f')11 '

/ E I{ (1 r, ~. p

THEOREM 1. Let r+ex-l,p~O, Thenf{>r any n, O:(t l < .. · <tl/:(I.
and s ~ r,

as n ->X,

where ..-111:=maxJc;;c;I/+I(t;~t; I) and ()II:=min 2 c;, I/(t,-t; J) with
to=O and tl/+ 1= 1.

Proal We begin with s = r.
For an arbitrary x E [0, I J, let t;, t; + I' ... , t, + , be the interpolation points

used by the algorithm A',II to approximate f(x). That is,

1+,. J j

A,.nlNIIU))(x)=p;(x)= I .ITt; . .." tlJ fl (x-t k ),

I I k- i

Obviously, XE [t,-..-11//2, t;+,+..-1n12J, and for xrj; {t" ..., t;+,] the error at
x equals

r t I

c(x)=f(x)- p;(x)=a(x) fl (x-t /)
/-=-I

with

(2.1 )

It is easy to check that for any y and x,

with

c ' I
C,= I ---dt,

'0 t'(1 + t)
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This and the well-known formula for divided differences,

375

(
k )I 'Ik I " " " .•f xo+L l,j(Xj-Xj 1) dAk ,,·dA j ,

I~ 1

yield

where

and

Note that the integral over Z E [0, t] reduces to an integral over
Z E [0, {r+! + A nl2J since YI and Y2 are always not greater than (r+ i + A,,/2.
Hence, changing the order of integration, we estimate la(x)1 by

where

r
ti

J" IrI j,;.1 r"']11 = ITr.,,(f)(z)! J ... «YI-Z),-l
'0 !"O () , ()

-(Y2-ZY l)dA r '''di'll dz

and

(Here, we assume that t i > An. This is without loss of generality since
otherwise II =°and 12 is over Z E [0, t r+! + A,,/2].)
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To estimate /1 observe that the mean value theorem yields

,1 )"/.I "'/'1 I

I I ···1 ((rl-·.::j" 1-lr2 .::)' Ijd)",···d)'1
- Ii • (l • ()

(x l -.::)" 1_(X2 -'::)' I

r!

for x/=.\).::jE [1,-,:1,,/2, I, I ,+L1".2l Note also that

for some () ~ O. Take now if defined by I /if + I p = I. Then Holder's
inequality and the fact that (a - 2) if + 1 < 0 imply

r ,/
2),/ d.:: J

(2.3 )

Here ('I and ('2 are positive constants independent of n.
To estimate /2' observe that

and

i'/.' I

I (Y2-'::)'+
-(l

(I + 1 !')--)'
I t' r + I £. nl'" --
(l,~ .

IX-I,_, 11(I-a)

Hence Holder's inequality yields

for a positive constant (',. This, (2.3), and (2.1) imply that

I e( x ) I ~ (' .d;, + y I I'

as claimed.
To complete the proof we now consider s> r. As before, given x, let p,

interpolate fat I" ..., I, t " Then for X$ (I, ... " I, t ,: the error at x equals

,t,

e( x) = f( x) - p, (x) = a( x) n (x - 1/)
/ I

with a(x) being a divided difference of degree s + L a(x) = f[I" ... , I"" xl
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Using the recursive definition for divided differences, we can represent a(x)

as a combination of divided differences of degree r + I. For those divided
differences, we have the same estimate as for a(.\) with s = r. Since the coef­
ficients in this combination are proportional to Q(i5:; '). we get that

This completes the proof. I
Remark I. For equally spaced points, A /I "" (\ "" 1/11 and then

a(A " .. " l') < ' 11 {r '" L p'~ _ .,_ n ~ j'lf n ~ f ~ :""",! I ~ <- s. r, 'x. p

whenever s ~ r. Hence, taking s larger than r does not essentially increase
the worst ease error (obviously, the constant cu.> I' does depend on sand
it grows with s - r). On the other hand, if s < r (or s < r I for ct = 0), the
worst case error of P, for the class W;," is unbounded. Hence, taking too
small s leads to less efficient algorithms.

3. MINIMAL ERROR

We estimate the minimal worst case error of approximating fE W;;',
That is, we estimate

>( , ,_. f' f· Ilf- A(N(f))II",p
( 11, r, :x, p) ,- III III sup . . ,

V A I"W~' !IT,.,(f)111'

where the first infimum is taken with respect to arbitrary information
operator N of cardinality 11,

and the second infimum with respect to arbitrary algorithm A, i.e., arbitrary
mapping from 9\" to B[O, I] (the space of bounded functions).

THEOREM 2.

{
ern

ern; r, ct, p) =
+00

(r+ x l/p)) if r+:x-l/p~O

othenvise.

Proof Due to Theorem 1, we need only to prove that for any N(f) =
Llu"(t I)' ..., flin'( t,,) ] and any A, the error

e(A,N;r,ct,p)= sup flI A(N(f))llsup
Ie lf~, II T,,(j )111'
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is bounded by
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{
Q(11

cIA, N; r, x, p) =
+cx

I r ILl'P)} if r + x - 1,/P 3 0

otherwise.
(3.1 )

As a matter of fact we prove a stronger result by showing that (3.1 ) holds
even if N consists of the following n(r + 1) evaluations

NU) = [fU I ), .... pr'(tl)' .... f(t,,), .... pr'(tll)].

Since Tr.o(f)(y)=pl''Lv)_pr'(O), (3.1) with 0:=0 follows from the
well-known results, see, e.g., [6]. Hence we can assume that :y > O.

We begin with r+x-l/p;?;O. Let O=t()~tl ~ ... ~11I~tll+] = 1 be
given. Let i be an index such that h := li+ 1- 1, 3 1/(2n) and 1-llf 131/2.

Let f be a function defined by

Then ±fE W;;" and N( ±I)= [0, .... 0]. Hence

('A N'" )>- F {III-A(O)llsLlP II-I-A(OlilsLlP}' >-.' IIIil sup
e , , I, Y., P :;.- max . I . , ?" . .

IITr.,(f)ll p ·ITr.)f)ll p Ii Tr.Jllll p

for every algorithm A. Since IIIII sup = (h/2 )CI' + 2, to prove (3.1) we need only
to show that

(3.2)

for some positive constant c independent of n. (As in Section 2, we shall use
C], ('2' ... , ('" to denote positive constants independent of 11.)

Note that Tr.aCf)(y)=O for y~t" and Tr."U)(y) = S;: 1 (y-t) I'

pr+ 1l(t) dt for y> Ii' Since If" I 11(r)1 ~ ('I h r + I, we thus have

IIT,.~(f)II;;~c;)h(rj-l)f)r'·l+h[f"l (y-t),'dtJ' dy+I

=(_(_.,_)f'hlr+l)pl'I,I+h[(V_()' "-(v-t )1 "]"dy+I
1 - Y. • I, . I • I -I- I +

"', _ I + h

~ ('chlr+ I II' I (y - (i)11 "'f' c~v + J
--"f{

where

J = rI II" f 1 (y _ I) "pr + I I( I) dtl J! cZv.
• /. I + Ir (,
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Integration by parts and the fact thatpri vanishes at t, and 1, + I yield

J= r Itt i"1 Cr-t)-' Iprl{t)d1IP dy.
01 t

J
__ J + h ., 1,

J~c5h(r+2)1' jd [(y-t,) '-(y-1i+Jl ']i'dy.
"'l r j' 1+.11

379

Since (y -- tJ -':t - (y - t;+! r-':t = -Clh(y - t i + I + b)~' ex 1 for every y;?:
1, + I + h with some b;?: 0,

Thus,

l'rT (nil "::::ch f + 2 X+I/p,, r,J." p-"""':::

as claimed in the first part of (3.2). This completes the proof of {3.1) for
r+7.-1Ip;?:O.

For r + :x - 11P < 0, i.e., r =°and Cl < 1/p, take a suitably large integer m,
and define,{,1/(x)=x(l/nl-x)+, Again, NU;,,)=O and 1i.J;"iis"p=(2m)-2.
Then (3.2) yields II To,,(!,Il)il p :S; em 2 H 11' and therefore

This completes the proof of (3.1 ). I

4. CONCLUDING REMARKS

In this section we briefly discuss some generalizations and applications of
the reported results.

4.1. Adaptation

It follows from general results, see [1,2, 7J, that Theorem 2 is valid for
a more general class of information that includes adaptive information,
that is, information consisting of function and/or derivative values taken at
adaptively selected points. Thus, function values at equally spaced points
are optimal (modulo a constant) in the class of adaptive information,
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4.2, Randomi::arion

G. W. WASILKOWSKI

Theorem 2 combined with results of [4] and/or [8] implies optimality
of a piecewise polynomial interpolation even among all random methods.
Here by a random method we mean an arbitrary algorithm that uses func­
tion and/or derivative values of f at adaptivcly and randomly selected
points; there is no restriction on employed randomization and in particular
the randomization may depend on f via already computed function and/or
derivative values, The error of such a method is defined as the worst case
(with respect to f) expected (with respect to the randomization) error.
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