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We study the crror in approximating functions with a bounded (r+ x)th
derivative in an L ,-norm. Here r is a nonnegative integer, x€ [0, 1). and /""" is
the classical fractional derivative. Le. /" (v)—f5(r—1), “d( /(1)) We prove
that, for any such function /. there exists a piecewise-polynomial of degree s that
interpolates / at » equally spaced points and that approximates / with an error (in
sup-norm) || /7", O~ 7712 We also prove that no algorithm based on #
function and/or derivative values of f has the error equal | /7" *'l, o(n V' * '/
for any f. This implies the optimality of piecewise-polynomial interpolation. These
two results generalize well-known results on approximating functions with bounded
rth derivative (x =0). We stress that the piecewise-polynomial approximation does
not depend on x nor on p. It does not depend on the exact value of r as well; what
matters is an upper bound s on r. 5= r. Hence. even without knowing the actual
regularity (r, 2, and p) of /. we can approximate the function f with an error equal
(modulo a constant) to the minimal worst case error when the regularity were
known.  © 1990 Acudemic Press, Inc

1. INTRODUCTION

For a nonnegative integer r and pe [1. +x ], let W’ be the Sobolev
space, i.e., it consists of all functions f: [0, | ] » W with (r — 1)st derivative
absolutely continuous and f"'e L .

It is well known that for any points 0<r, < - <t,<1 and any
function f'e W7, the error in approximating / by a piecewise-polynomial

P,_(f) of degree r— 1 interpolating f at the points ¢, is proportional to

r

£, 4, 7 e

— P, )
Sup H/ ” 1(,/)‘311p=0(/1x,p r).

fen, H_f.(r)H/v !

Here, A, =max, [1,— ¢, | with r;=0and r,, ,=1.
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APPROXIMATION OF FUNCTIONS 373

It is also known, see, e.g., [1,6] or [3,5] and the papers cited there,
that no algorithm that is based only on # function and/or derivative
evaluations has the error smaller than O(n'” ). Hence, modulo a
constant, an algorithm provided by piecewise-polynomial interpolation at
equally spaced points is optimal.

In this paper we generalize these results by considering functions that
have (r + a)th derivative bounded in L, -norm, where « is an arbitrary real
number from [0, 1). The class of such functions we denote by W2 see
Section 2 for a formal definition.

In particular, in Theorem | we show that for any r, 2, and p, the
piecewise-polynomial interpolation of degree s at n equally spaced points
yields an algorithm with the error

1/ = P

(r+ Lipy - ) )
AT FARRL Otn =77 77 if s>r
[ ,; . i p

In Theorem 2 we show that no algorithm based on » function and/or
derivative evaluations has the worst case error for the class W7* smaller
than O(n'” © *). This, with Theorem 1, implies optimality (modulo a
constant) of P, at equally spaced points for s = r.

We summarize the contents of the paper. Theorems 1 and 2 are
presented in Sections 2 and 3, respectively. We conclude the paper,
Section 4, with comments concerning applications of Theorems 1 and 2 to
other problems.

2. ERROR OF PIECEWISE-POLYNOMIAL INTERPOLATION

For given a nonnegative integer r, x€ [0, 1), and pe [1, ¢ ], let
Wir={f:[0,1]>%R: " isabs. cont.and | T, ,( /)], < = |.

Here T, ,(f), the fractional derivative /' *, is defined by
al
TN =] (=02 df (1)
0
Equivalently,
T, () =Pf" " )y)

and P, is a fractional derivative (or integral) operator,

P.(g)(y)

1
[ etndiy—nt 7

:lfoc
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Observe that for x=0, 7, ,(/)(»)= f"(¥)— /'(0). Hence, W’ " is a dense
subspace of W7.

For givennand 0<t, < --- <1, <1, let N, be the information consisting
of function values at points 7,,

/Vn(.f.) = [/([] )1 RhAt) /(,”)].

and let A, ,(N(f)) be a piecewise-polynomial of degree s that interpolates
J. We measure the (worst case) error of 4, in the class W* by

SoH

— A (NN
()(A s N”; r’ a‘ p) — Sup ”/ ‘ ,\,H( Ij(f ))"Sllp
owr TN,

THEOREM 1. Let r+o—1/p=20. Then for any n, 0<t, < - < 1, <1,
and s=r,

e(A, . Nsra, py=0(4"" 177 ) as n— x,

where A, i=max, <, (t;—1; () and 3,:=min,_,_(t,— 1, ;) with

to=0andt,, =1

Proof. We begin with s=r.
For an arbitrary xe [0, 1], let 7,, 7, |, .... ¢, , be the interpolation points
used by the algorithm A, , to approximate f(x). That is,

ftor

A\;H‘Nn(_f))(x): pi(x): Z f[’l" e ,/] l—l (Xi ’k)'

k=i

Obviously, xe [t;—4,/2,t;,.+4,/2], and for x¢ {1,,... 1, ,} the error at
x equals

rtd

e(x) = f(x) = pix)=a(x) [] (x—1,) (2.1)

J=1
with

f‘[’i""ﬂ lrvi 13’\’]—"./.[’14»]’"'7 tr+1 l’[r+1~x-]

[l*ll‘+l

a(x)=flt; .ty x]=

It is easy to check that for any y and x,

SO =) =GP AT AN =Py AT LN (22)

with

=

dt
do 1*(1+1)
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This and the well-known formula for divided differences,

rloan

SLx00 o x4, ] =J ‘

0 Y0

1 Ak k
o .J() ./l"s) <X()+ Z /']'(xl'_'\r_/'— ‘)> d/'/\' . kd’tlﬁ

jel

yield
Ty rlopdy o
{x) =
alx) ,+g*2";-}ﬁ ‘o ~§(>
I > A ~
x[f Tr,,(_f)(z)((}’;Wr}f["~(yz—:}§‘}d:]xda,-«d&,
0
where
M=t A~y )+ o A —1,,)
and

a=Gt a0 e R A =)

Note that the integral over ze[0, 1] reduces to an integral over
ce[0, ¢, +4,/2] since y, and y, are always not greater than ¢, ,,+4,/2.
Hence, changing the order of integration, we estimate |a{x)| by

8 e 5)s
a0 €= (4 1)
where
4 Ay 1 poy U
—_ 3o (4 =3x
=[] s
— (¥ =2V VA, diy| e
and
it dni2 1 ~dy P
1"= T i et - .__Zl-~l
TG ) R R (ST

—{y>— 22"V dA, - diy| dz.

{Here, we assume that 7,>4,. This is without loss of generality since
otherwise /, =0 and I, is over g {0,+, ., + 4,/2]1)
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To estimate /, observe that the mean value theorem yields

N ' ey =2 2 Y dA, - di

for x,=x,(c)e[1,—4,/2,1,,,+4,/2] Note also that

voba

(=2 o) T= = D=4, 240 - 2)F

for some 6>=0. Take now ¢ defined by l/¢+1/p=1. Then Hoélder's
inequality and the fact that (x —2) ¢+ 1 <0 imply

Coan 1, 1.g

I <eo 4, T,,,(_f')l,,[. (1, =2 —A,/2)" Md:

Y0

:('ZA: l+lq:(,2A1 ]/7. (

"

1o
(O8]

Here ¢, and ¢, are positive constants independent of n.
To estimate /-, observe that

S . t,,;+4,72—:-)
‘ (vi—2)* 'a’/v,g( t : )
c0 "\‘7tr'+i‘ (1 —fl)
and
pA . 1, +4,2—z)
| (ra—o) NdA < Uit s "
<0 [x—t, -, ([ (1)

Hence Holder's inequality yields
1 1

-+
"\‘7’["! l; "\‘—IV*’!‘,

IQS(.} HTrat(f)“pAl)i‘ : ‘/|:

for a positive constant ¢,. This, (2.3), and (2.1) imply that

le(x)| <cdl " " 7,

as claimed.
To complete the proof we now consider s> r. As before, given x, let p,
interpolate f'at 1, ..., ¢, , .. Then for x¢ {7,. ... ¢,, ,} the error at x equals

rotow

st

e(x)=f(x)—p(x)=alx) || (x—1))

with a(x) being a divided difference of degree s+ 1, a(x)= f[1,, ... t,.,, X].
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Using the recursive definition for divided differences, we can represent a{x)
as a combination of divided differences of degree r + 1. For those divided
differences, we have the same estimate as for a(x) with s = r. Since the coef-
ficients in this combination are proportional to £2(37 *), we get that

le(x)<ecdrt® trgr o

This completes the proof.
Remark 1. For equally spaced points, 4, =35,=1/n and then

A N, rapi<e,, n Hix b

LR B SRR

whenever 5> r. Hence, taking s larger than r does not essentiaily increase
the worst case error (obviously, the constant ¢, , , does depend on s and
it grows with s —r). On the other hand, if s <r (or s<r~1 for x=0), the
worst case error of P, for the class W) is unbounded. Hence, taking too
small 5 leads to less efficient algorithms,

3, MiNnmMAL ERROR

We estimate the minimal worst case error of approximating f'e W)™
That is, we estimate

of - R . “J‘WA(N()())”mp
R S T VAT

where the first infimum is taken with respect to arbitrary mformation
operator N of cardinality »,

N(OY=L0 ) w0 f2000]

and the second infimum with respect to arbitrary algorithm A, ie., arbitrary
mapping from R” to B[O, 1] (the space of bounded functions).

THEOREM 2.

On "My rda—1/p=0

e(n;r, o, py= )
( r { + o otherwise.

Proof.  Due to Theorem 1, we need only to prove that for any N(f)=
[/ o, f2,)] and any A, the error

LS = AN,
(A, Ny r, o, p)= ——F
AN a )= e T,
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is bounded by

Qn e it r+x—1/p=0
eld, N;r, x, [1)={ ( ) ’ ) ! (3.1)
+ o otherwise.
As a matter of fact. we prove a stronger result by showing that (3.1) holds
even if N consists of the following »{r + 1) evaluations

N =LA S [ S0 ],

Since T, o()(»)=f""(v)— f"(0), (3.1) with a=0 follows from the
well-known resuits. see, e.g., [6]. Hence we can assume that « > 0.

We begin with r+2—1/p=0. Let O=¢,<t, < - <1,<t,,,=1 be
given. Let 7 be an index such that h:=¢, ., —¢,21/2n)and 1 —¢,, , = 1/2.
Let f be a function defined by

Sxy=(x=1,y "¢, —x) "
Then + fe W) and N(£/)=[0,... 0] Hence

6'(14, ]V.. v p)} max {f - A(O) ‘xup~ H;f - A(O)i snp} > Hf”\up

T, (), T, 0, 57T 00,
for every algorithm A. Since || /.., = (h/2)" " °. to prove (3.1) we need only
to show that

1T A, <ch s e (3.2)

for some positive constant ¢ independent of n. (As in Section 2, we shall use
€y Cq, s Co to denote positive constants independent of ».)

Note that T, (/)»)=0 for v<i¢,. and T,,(/Hv)={"(y—0) "~
LU dt for y> 1, Since | £ V(1) < e AT, we thus have

alyo |+ A

iy r
e [ [ G a | e

ya
Yl

('l r pl. 1+
:<l > Rt . [(»l'*‘f,-]l 17{,‘1_“‘1)& 3t_-l‘p[‘ly-’_]
A da

o1+ h
gz'zlr"'“”’( (v—1)"" rdv+ T
g
é('}h"'*z”’hl 4],
where

rlig ’

(yv—1) *fUrnyde dy
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Integration by parts and the fact that /" vanishes at ¢, and ¢, , yield
g yp 1Y

ol
I=

Y1+ h

I I4
oc[ (r—1)"" ' U dr

£,

Since [/ N1} S e 77, we get

nl
I<csh 7 | =) = (07
Yhet A

Since (y—¢) = {(r—t,,,) "= —ah{y—~1,,,+8) * ! for every v>
f; 1+ h with some 620,

. . - ) e
1<Cﬁh(r+2]php[hl (1+a¢)pm(]«[{+])l “+wp]<(‘6h('+“ o(ﬂ»lp)/).

Thus,

1Tl Y <=2 =+,

as claimed in the first part of (3.2). This completes the proof of (3.1) for
r+a—1/p=0.

Forr+ua—1/p<0, ie, r=0and x<1/p, take a suitably large integer m,
and define £, (x)=x(I/m~x) . Again, N(f,,)=0 and |/, lw,=(2m) "
Then (3.2) yields || Ty (/) ,<cm %777 and therefore

“‘fm“sup >*~}’Hl"’7 s on,

1To 70, de

This completes the proof of {3.1). |

4. CoNcLupING REMARKS

In this section we briefly discuss some generalizations and applications of
the reported results.

4.1. Adaptation

It follows from general results, see [1, 2, 7], that Theorem 2 is valid for
a more general class of information that includes adaptive information,
that is, information consisting of function and/or derivative values taken at
adaptively selected points. Thus, function values at equally spaced points
are optimal {(modulo a constant) in the class of adaptive information.
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4.2. Randomization

Theorem 2 combined with results of [4] and/or [8] implies optimality
of a piecewise polynomial interpolation even among all random methods.
Here by a random method we mean an arbitrary algorithm that uses func-
tion and/or derivative values of f at adaptively and randomly selected
points; there is no restriction on employed randomization and in particular
the randomization may depend on f via already computed function and/or
derivative values. The error of such a method is defined as the worst case
(with respect to /') expected (with respect to the randomization) error.
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